Manifold Integration with Markov Random Walks

نویسندگان

  • Heeyoul Choi
  • Seungjin Choi
  • Yoonsuck Choe
چکیده

Most manifold learning methods consider only one similarity matrix to induce a low-dimensional manifold embedded in data space. In practice, however, we often use multiple sensors at a time so that each sensory information yields different similarity matrix derived from the same objects. In such a case, manifold integration is a desirable task, combining these similarity matrices into a compromise matrix that faithfully reflects multiple sensory information. A small number of methods exists for manifold integration, including a method based on reproducing kernel Krein space (RKKS) or DISTATIS, where the former is restricted to the case of only two manifolds and the latter considers a linear combination of normalized similarity matrices as a compromise matrix. In this paper we present a new manifold integration method, Markov random walk on multiple manifolds (RAMS), which integrates transition probabilities defined on each manifold to compute a compromise matrix. Numerical experiments confirm that RAMS finds more informative manifolds with a desirable projection property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathav Murugan 1 Gaussian Estimates for Random Walks

My research interests lie at the interface of probability and analysis. The broad goal of my research is to understand how the long-term behavior of Markov chains depends on the large-scale geometry of the underlying state space. In particular, I am interested in heat kernel estimates for discrete time Markov chains on state spaces having a geometric structure, for instance a weighted graph, Ri...

متن کامل

Word, graph and manifold embedding from Markov processes Author=Tatsunori Hashimoto, David Alvarez-Melis, Tommi S. Jaakkola

Continuous vector representations of words and objects appear to carry surprisingly rich semantic content. In this paper, we advance both the conceptual and theoretical understanding of word embeddings in three ways. First, we ground embeddings in semantic spaces studied in cognitivepsychometric literature and introduce new evaluation tasks. Second, in contrast to prior work, we take metric rec...

متن کامل

Large Deviations for Random Walks in a Mixing Random Environment and Other (Non-Markov) Random Walks

We extend a recent work by S. R. S. Varadhan [8] on large deviations for random walks in a product random environment to include more general random walks on the lattice. In particular, some reinforced random walks and several classes of random walks in Gibbs fields are included. c © 2004 Wiley Periodicals, Inc.

متن کامل

Random Walks on Finite Quantum Groups

1 Markov chains and random walks in classical probability . . 3 2 Quantum Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Random walks on comodule algebras . . . . . . . . . . . . . . . . . . . . . . 7 4 Random walks on finite quantum groups . . . . . . . . . . . . . . . . . . 11 5 Spatial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Saddlepoint Approximations and Nonlinear Boundary Crossing Probabilities of Markov Random Walks by Hock

Saddlepoint approximations are developed for Markov random walks Sn and are used to evaluate the probability that (j − i)g((Sj − Si)/(j − i)) exceeds a threshold value for certain sets of (i, j). The special case g(x) = x reduces to the usual scan statistic in change-point detection problems, and many generalized likelihood ratio detection schemes are also of this form with suitably chosen g. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008